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Abstract Being extensively used in metallurgy, rotating magnetic fields ave also becoming
increasingly interesting for application in crystal growth, where they arve intended to act by
stabilizing the melt flow. For this purpose, it is important to understand the basic interactions of the
magnetically induced flow and other flow components like time-dependent buoyant convection. So a
three-dimensional finite volume method was developed in order to numerically study the effect of a
rotating magnetic field on convection in a cylindrical melt volume. The equations of mass,
momentum, and heat transport ave solved together with the potential equations describing the
electromagnetic field. The numerical computation of the Lorenz force distribution is validated by
comparison with an analytical solution. The effects of magnetic field parameters on the temperature
distributions and the flow patterns in the considered configurations are analysed.

1. Introduction

The flow in electrically conducting melts, like metals or semiconductors, can be
contactlessly influenced by externally applied magnetic fields. In metallurgy,
various kinds of magnetic fields have been in use for decades, e.g. for the mixing
of alloys or controlling the melt flow in continuous casting of steel (Spitzer ef al. ,
1986). Industrial semiconductor crystal growth from the melt has included the
application of magnetic fields only for about the last two decades. Nevertheless,
the damping of undesirable flow components resulting from buoyancy by steady
magnetic fields is well-established, for example, in the growth of silicon crystals
by the Czochralski method (Miiller, 1998). In this way, inhomogeneities in the
grown crystal can be sufficiently suppressed. However, this often requires large
magnetic field strengths and thus large and expensive magnets. In Tomzig et al.
(1999), a facility for generating a 0.15 T static cusp field (Miiller, 1998) is said to
have a weight of 10 tons and an energy consumption of 400kW. For large melt
volumes — industrial Czochralski crucibles may have diameters of 32 inches — the
necessary magnetic induction is in the range of several tesla. This is why the
possibilities of time-dependent, e.g. rotating, magnetic fields have been the focus
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significantly lower magnetic inductions and they can thus be realised by
relatively simple coil arrangements. Time-dependent magnetic fields do not damp
selected flow components like steady magnetic fields, but enforce a certain flow
direction, thus suppressing other disturbing flow components. In the case of a
magnetic field rotating in the horizontal plane around the vertical axis, a Lorentz
force in dominantly azimuthal direction is induced, resulting in a forced fluid flow
in azimuthal direction again. This basically means that the fluid is stirred and
shows a rotational motion. Solid end walls of the container result in an additional
secondary motion in the meridional plane. The optimizing and development of
magnetic facilities for crystal growth for both static and time-dependent magnetic
fields are an important aspect of competition among the semiconductor producers.
In order to improve the usefulness of time-dependent — in our case rotating —
magnetic fields for industrial applications, it is important to understand the basic
mechanisms of the interaction of the magnetically induced flow and other flow
components like buoyancy, as well as to carry out extensive parameter studies in
model configurations.

Significant literature on the application of rotating magnetic fields can be found
even in the 1960s (Johnston and Tiller, 1961). A lot of theoretical work on the action
of a rotating magnetic field on a conducting liquid has been done, including
manifold analytical solutions and flow stability analyses (Moffatt, 1965, 1978;
Richardson, 1974; Davidson, 1992). In many cases, simplified configurations are
considered like infinite cylinders as approximation for long finite cylindrical
containers. More realistic analytical approaches for the flow in finite cylinders can
be found, e.g. in Gelfgat et al. (1993) and Gorbunov and Kolevzon (1993). A very
detailed survey on the early theoretical work is given in Dahlberg (1972), while
Gelfgat and Priede (1995) give an up-to-date summary on rotating magnetic field
studies up to 1995. A first numerical model for finite cylinders with electrically
insulating walls was presented in Gelfgat et al. (1991) and Priede (1993), including
basic flow regime analysis. In Priede and Gelfgat (1997) an extended study was
presented, investigating the influence of conducting walls and identifying the
generation of Taylor-vortex-type instabilities at the vertical cylinder wall, which
are carried to the cylinder end walls by the meridional secondary convection. The
effects of a finite magnetic inductor and its position relative to the melt, as well as
the influence of two counter-rotating magnetic fields, were studied in Abricka ef al.
(1997). A parameter study for field frequency and amplitude was presented in Barz
et al. (1997). Kaiser (1998) also made a numerical stabilty analysis for a cylinder,
investigating the influence of aspect ratio on the generation of the Taylor-type
vortices. A study of stability thesholds and the superposition of steady and
rotating magnetic fields can be found in Mof3ner and Gerbeth (1999).

All of these numerical studies deal with 2D models, assuming axial Ssymmetry.
Basically, this is only justified as long as there is the mere rotation induced by the
magnetic field and no other or only very weak three-dimensional time-dependent
flow components like buoyant convection. Therefore, the numerical work
mentioned above mainly considers isothermal melts or a temperature profile
resulting in a stable layering of the fluid. In Kaiser (1998) also a Bénard
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configuration was considered, but the Rayleigh number was chosen such that no
buoyancy convection develops. Mofner and Gerbeth (1999) also investigated
buoyant convection in axial symmetry for heated side walls.

Only very few simulations have been done with a 3D model, which, however, is
necessary to correctly seize the interaction of magnetic and buoyant forces. In
former studies by our group (Fischer et al., 1997; Friedrich et al., 1999) 3D time-
dependent numerical simulations were carried out for a cylinder with aspect ratio
1.0 and Rayleigh-Bénard temperature boundary conditions; i.e. a linear temperature
profile with hot bottom and cold top was prescribed at the container walls.
Concurrently, temperature measurements were made in a corresponding test cell
filled with liquid gallium. It was found that temperature fluctuations resulting from
time-dependent buoyant convection can be efficiently damped by applying a
sufficient rotating magnetic field. With a smaller magnetic field regular sinusoidal
temperature fluctuations indicate the precession of flow and temperature patterns
that are a hybrid of meridional buoyant patterns and the magnetically forced
rotation. This behaviour was confirmed in 3D simulations by Kaiser (1998). When
increasing the magnetic field beyond the optimum value for damping, irregular
high-frequency temperature fluctuations occur resulting from Taylor-vortex-type
instabilities. All these flow regimes were also found in the experiments, showing a
good accordance with the numerical results. Another detailed experimental analysis
of flow regimes was done by Volz and Mazuruk (1996).

In this paper, we put the emphasis on introducing the method for the
numerical treatment of the rotating magnetic field, which is explained in detail.
The numerical calculations of the Lorentz force are compared to analytical
solutions for the case without taking into account fluid flow. Furthermore, we
present new results of 3D numerical simulations of melt convection under the
action of a rotating magnetic field in a finite cylindrical volume with aspect
ratio 0.5, which are a continuation of the numerical studies in Friedrich et al.
(1999) for aspect ratio 1.0. In this work, former observations are confirmed and
some additional flow regimes revealed.

2. Model description

2.1 Governing equations

The melt flow is governed by the three-dimensional equations describing mass,
momentum, and heat transport. In a Cartesian coordinate system (v, y2,V3),
making use of the Boussinesq approximation for an incompressible fluid
(fei = —p(Tret) i B(T — Tyef)) and of an additional term for the Lorentz force
density (fz; = (; X é)i) to take into account the magnetic field, we have the
following set of magnetohydrodynamic equations:

0

; (i) =0 1)



ot (p z) - B ; (puz”j + Tij) ) +fgz +fri (2)
0 0 oT
5507 =~ (T -Tr5) 3)

Thereby p is the density, #; is the i-th Cartesian component of the melt velocity
(¢ =1,2,3), p is the pressure, Iy is the diffusion coefficient for the temperature,
T\t is a reference temperature, g; is the i-th component of the gravitational
acceleration, 3 is the thermal expansion coefficient, 7; is the stress tensor, B is
the magnetic induction and j is the current density.

For an incompressible Newtonian fluid with dynamic viscosity p, the stress
tensor is defined as:

B c%tl Ou;

The current densityfis determined by Ohm’s law

=0 <E+uxB) (5)

with o representing the electrical conductivity.
The electric field E can be written in terms of the electrodynamic potentials
(see Moreau, 1990)
Y

E=-Vo-—. (6)

where A is the magnetic vector potential and ® is the electric scalar potential.
The continuity equation for the current density

V=0 (7)

yields the governing equation for the scalar potential ®.

No-slip velocity boundary conditions and Dirichlet thermal boundary conditions
are imposed on the walls of the melt container. The normal component of the electric
current is assumed to be zero at the electrically insulating boundaries of the cylinder:
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2.2 Rotating magnetic field
For a cylindrical cavity of radius R, the externally applied rotating magnetic
field B(y1,2,¥3) (in this study with two pole pairs) can be written as:

o B B
B= {—];(yl sin wt — Y2 cos wt); ﬁom coswt + Yz sinwt); 0} 9)

The corresponding magnetic vector potential can be easily obtained via
B =V x A and the Coulomb gaugeV - A =0

A= {00 - 2o 0f - Bcoset+ smed] | (10

where By is the magnetic field amplitude at radius R and 42 its frequency (for

the case of two pole pairs, the rotation frequency of the magnetic field pattern is

st = 352). Using moderate frequencies, for which the skin depth 6 = | /u%(“:

magnetic permeability) is not significantly smaller than the dimensions of our
melt, we do not need to take into account the skin effect in our calculations
(Moreau, 1990). One characteristic for this approximation is that there will be
no phase shift between the rotating quantities. We can split the scalar potential
® into ®; and ®» (Barz et al., 1997), where:

b = @1@1,312,3)3) sin wt + <I>2(yl7y2,y3) cos wt (11)

Together with equation (11) introduced in equations (6) and (5), equation (7)
yields the governing equations for ®1 and ®:

Adyy + ﬁ’Xl,Z =0, (12)

where

- B,
X1 = ?O{yzus; yiuz; youi + yiuzg} (13)



=

B
Xo = ?o{ylus; —Youz; —y1u1 + youso} (14)

At the boundary (see equation 8) we have:

- B
iV =i 405 0; 520 (65— 5%) (15)
2R
i Vg =i - {0; 0; %yzyl} (16)

If B is changing with frequency w, the quantities E,;', and @ will change
with the same frequency. Consequently, the Lorentz force consists of a mean
time-independent part and an oscillating part. In the present work, we assume
that due to its high inertia the fluid is unable to follow this oscillating force
component. Therefore, our numerical analysis is limited to the time-
independent mean Lorentz force.

The following integration leads to the time-averaged Lorentz force components:

2

(7) = <2§> B / i Ba (17)

2.3 Numerical discretization method
The present simulations were done with the non-commercial finite volume code
STHAMAS3D, which was developed in our group. It allows three-dimensional
time-dependent simulations on a block-structured numerical grid. The code
solves the governing equations (1-3) and (12) and is used on a Linux PC. Time-
dependence and three dimensions coupled with extensive parameter variations
require a large computational capacity and result in long computation times.
So, for the more recent studies a vectorized version of the code was developed
to be used on a Fujitsu VPP700 and a Cray T90 high performance computer.
The discretization procedure of the finite volume method (FVM) is well-known
from its application to fluid flows (Peric, 1985; Leister, 1994; Ferziger and Peric,
1996). In our case,the method was extended to solve the magnetohydrodynamic
equations (1-3) coupled with the scalar potential equation (12). The computational
domain is a cylindrical cavity with height H and diameter D, which is subdivided
into five blocks consisting of control volumes (CVs). The basic structure of the
numerical grids used for the cylinders is illustrated in Figure 1. The grids are
three-dimensional, structured, and non-orthogonal.
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Figure 1.

The geometry of the
cylindrical melt volume
— with isothermal end
plates (T, and T, and a
linear temperature
profile along the side
wall — and an
illustration of the
block-structured grid
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An important issue for the quality of the numerical simulations is the choice of
the grid. In this connection both the numerical resolution and the internal
structure of the grid are crucial. The second item can be seen in the refining of the
grid towards the walls of the melt container, which is necessary to properly
resolve the boundary layers of the flow. A detailed grid size analysis presented in
a former study by the authors (Friedrich et al., 1999) showed 60,000 CVs to be
completely sufficient for the considered flows in cylinders with aspect ratio
% = 1.0. In addition, when keeping the diameter the necessary number of control
volumes is approximately linearly dependent on the height of the cylinder. The
use of the vectorized version of the code on high performance computers allowed
us to choose a grid of 130,000 CVs for the latest studies of cylinders with aspect
ratio % = 0.5 presented in this paper. Consequently, with such a grid the
numerical resolution of all flow properties is absolutely ensured. As we have
seen, the governing equation (12) for ®; and ¥, has the following form:

AD+V-X=0 (18)
For the FVM it is necessary to have the integral formulation of the governing
equations. Considering an arbitrary CV with volume V bounded by the surface S,
equation (18) can be transformed by means of Gauss’s theorem:

/V(Aq>+v“-f()dvz/s(v“q>+f()-d§:0 (19)



Leaving the usual FVM neighbour nomenclature of E(ast), W(est), N(orth),
S(outh), T(op) and B(ottom) (Figure 2) for reasons of convenience, the six faces of
our CV are simply denoted by F; (j € {1,2,3,4,5,6}). The total surface S is
equalto S =} . F;. Equation 20 can then be expressed by:

Z/F(V*<I>+)?)-d§—o (20)
J j

It is known from Peric (1985), Leister (1994) and Ferziger and Peric (1996) that for
a simple Laplace equation, the FVM yields a system of linear equations:

ap®p = 4%+ S, (21)
J

where ®p denotes the value of ® in the central point P of the CV and the ®; denote
the values of ® in the central points of the neighbouring CVs corresponding to the
cell faces F;. The a; are the coefficients and Sg is the source term for the system.

The a; coefficients fulfill the relation ap = ) ;a;. For more details, see Peric

(1985), Leister (1994) and Ferziger and Peric (1996).
By applying the FVM to equation (20) one can obtain a system of equations
similar to equation 21:

dP(I)P = Z djq)j + S(/I, s (22)
J

,—- - -
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Figure 2.

Common finite volume
nomenclature for a 3D
control volume with the
reference point P and its
neighbouring points (E,
W, N, S, T, B)
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where

p=Set+ ) FX, (23)
ij
with F¥ representing the i- component of the vector normal to the cell face F}, and
XZ representing the i-component of X onF; (€ {1,2,3}andj € {1,2,3,4,5,6}).

By inserting equations (6), (9), (10) in equatlon ®) and finally using equatlon 17),
the time-averaged Lorentz force components come out as:

O’B() _8‘1)1 8@2 Bowyyy% Bowy% B()Mly% Bou]yg
L1 =55 Yoty — — — —
R a2 " oy R R R R
oBy [0®; 0y Bowyy:  Bowy;  Bousy?  Bouoyl
et _ — — 24
Sz =R o " o 2R T 2R R R (24)
_ oBy [ 0% 0P 05 05 2Byus (y% +y§)
Jr3= R | o ¥z & N o yn+ P ¥z ?

If no magnetic field is present, the FVM also yields a linear system of equations
for the momentum equation (2) (see again Peric, 1985; Leister, 1994; Ferziger and
Peric, 1996):

apuf =) il + S, (25)
j

with u; representing the i-th velocity component on the cell face F;. If equation (24)
1s introduced in equation (2) and the FVM is applied, equation (25); becomes:

apul’ = Za]u’ +S,. (26)

where the terms denoted by ' have the following meaning, e.g. for the first velocity
component #1:

oB2V (P
th=ap+ O 124 )

oByV (P) [0, +8<I>2 _Bowygy%_Bowyg
ok |2 oyt 2R 2R

(27)
S, = Su +

where V(P) is the volume of the CV P. The partial derivatives in equations (24) and
(27) are numerically treated according to the finite volume method (Peric, 1985).

Similar relations can be obtained for the remaining two velocity components.
The resulting set of algebraic equations is solved by the Strongly Implicit
Method of Stone (Stone, 1968; Leister and Peri¢, 1994). The SIMPLE algorithm
is applied for pressure correction (Patankar, 1980) and the Implicit Euler
Method is made use of for time integration (Leister, 1994).



3. Results and discussions
3.1 Numerical calculations and analytical solutions
We have chosen a typical Rayleigh-Bénard configuration as test case. Our
geometry is a cylinder with height H and diameter D. At the cylinder wall a
linear temperature profile with a temperature difference AT =T, — T, is
imposed (see Figure 1). Simulations were carried out for a gallium melt
(p=6.1-10°%8 5=1.26-10"*K"1, 1 =1.907 105 Ty =9.22.1072%
and o = 3.87 106 A - (see Baumgart], 1992).

If we do not take mto account fluid flow (% = 0), the equations for the scalar
potential can also be solved analytically for a finite cylinder of radius R. In this
case, the analytical solution for the Lorentz force density is:

fL,l :fipSingpa fL,Z :fwcosgov fL,3:07 (28)
where

fo= O'B(2)7/w

1r, 1 2O )5 00)
4(R) ZUZ( ) ]1()\11)]3()\11)))\11

(cosh ()\n%) + d — cosh ()Z ) sinh ()\njﬁ)>] ,

and7 = (2 + J’%)é and ¢ come from the corresponding cylindrical coordinates

(7, 0,2 =y3). . ' '
Jp are the Bessel functions and \,, are solutions of the equation

]2(—)—3()

See, for example, Gelfgat et al. (1993) for similar considerations with one pole pair.

In order to validate our numerical method we have carried out the numerical
calculation of the Lorentz force for a cylinder with H=4cm and D =4cm, 1.e.
aspect ratio % = 1.0, without taking into account fluid flow (% = 0). In our
calculations we used By=3.3mT and w =50Hz. The analytical solution was
found using equation (28). A comparison of the numerical and analytical
solutions for the azimuthal Lorentz force is given in Figures 3 and 4. Figure 3
shows the azimuthal Lorentz force along the z = y3-axis at 7 ~ %R and Figure 4
in radial direction at z = y3 = %’ It can be pointed out that the numerical and
analytical results are in very good agreement.

3.2 Influence of rotating magnetic field on the flow

This paragraph is devoted to the results of a systematic numerical investigation
of the action of the rotating magnetic field on the melt flow in a cylindrical
Rayleigh-Bénard configuration as described in section 3.1. Calculations have
been made for cylinders with aspect ratio 1.0 and 0.5, extensively varying several
system parameters like the amplitude of the magnetic field and the thermal
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Figure 3.

Comparison of
analytical and numerical
values of the azimuthal
Lorentz force along the
z-axis (yz-axis) at 7 ~ 3R

Figure 4.

Comparison of
analytical and numerical
values of the azimuthal
Lorentz force in radial
direction at z = y3 = %

30.0 T T y T - T

r ~ 3R e—o analytical
4 O FV method

60.0

o—o analytical
0O FV method




boundary conditions AT. Aspect ratio 1.0 (see section 3.1) has been studied in
detail both numerically and experimentally in Fischer ef al. (1997) and Friedrich
et al. (1999), and we will only give a short retrospective description of that work.
Taking a closer look at the latest numerical results for aspect ratio 0.5 (with
H=1.7cm, D = 34cm), the different flow regimes discovered will be explained in
detail and compared to the ones identified for aspect ratio 1.0. Figure 5 illustrates
the principal effect of a rotating magnetic field on fluid flow in a cylindrical melt
(aspect ratio 1.0, By =2.5mT, w =27 50Hz, AT=10K). The main flow, driven by
the Lorentz force, is in the azimuthal direction, while being mainly in the
meridional plane in the purely buoyant case (see, for example, Fischer et al.,
1997). The presence of the solid cylinder ends causes a secondary motion — two
tori at the bottom and top of the melt, respectively (Figure 5b) — in the meridional
plane, which is significantly smaller than the azimuthal rotation. The flow is
basically axisymmetric. The isotherms in a vertical section are almost flat in the
presence of the rotating magnetic field, which implies a stabilized heat and mass
transport in the axial direction.

The change in the temperature profile can also be seen in Figure 6, where
numerical and experimental values for the normalized temperature along the
cylinder axis are plotted (Friedrich et al., 1999), both for pure buoyancy and for
a rotating magnetic field of 3.3mT (aspect ratio 1.0, w = 27 50Hz, AT=20K).
There is a linearization of the temperature profile in the core of the melt due to
the action of the magnetic field. The numerical results in Figure 6 agree
qualitatively very well with the measurements. The quantitative deviations,
especially for the case Bo=0mT, are mainly a consequence of experimental

Section

0

(b)

(a)
Source: Friedrich et al. (1999)
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Figure 5.

Velocity profile and
isotherms for the aspect
ratio 1.0 Rayleigh-Bénard
configuration with

AT =10K in a horizontal
(@), atz =y3 =4 and
vertical (b) section, with a
rotating magnetic field
By = 25mT, w = 27
50Hz). The isotherms are
equally spaced

(AT = 1.1K). The
maximum values of the
cylindrical velocity
components are:

Urmax = 7% » Vipmax = 22

mm — mm
s s Uzmax = 3 s
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Figure 6.

Numerically and
experimentally obtained
temperature profiles (time-
averaged) on the cylinder
axis, for AT = 20K, in
normalized presentation,
with (By= 3.3mT,

w = 27 - 50Hz) and
without a rotating
magnetic field

Figure 7.

Velocity profile and
isotherms for the aspect
ratio 0.5 Rayleigh-
Bénard configuration
with AT =10K, in a
vertical section, without
rotating magnetic field.
The isotherms are
equally spaced

(ATi= 1.1K). The
maximum values of the
cylindrical velocity

components are:

— [ mm
- 5 S 704,9,max

j— mm
Vzmax = 4 S
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< r . , :
| \\\O -=~=-= B =0.0 mT (computation)
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| ]z 08 | o OB = 3.3 mT (experiment) 1
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c “\
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0.0 0.2 04 0.6 0.8
. . . z
normalized axial coordinate q

Source: Friedrich et al. (1999)

uncertainties like positioning of the temperature sensor and not completely
ideal thermal boundary conditions in the set-up, and appear independently
from the choice of the numerical grid.

With the results of calculations for the three-dimensional time-dependent
flow in a cylinder with aspect ratio % = 0.5 (D=3.4cm) the different flow
regimes that appear when increasing the magnetic field amplitude will now be
illustrated (w = 27 50Hz, AT = 10K, if not stated otherwise). Time-dependent
numerical temperature signals have been recorded at three different monitor
pointsatz = % and » = R — 4mm, which were azimuthally separated by 90° in
order to study phase shifts between the signals. All horizontal sections through
the cylinder in the following Figures will also be presented for z = % Figure 7
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in a vertical section of the cylinder shows the purely buoyant flow for
By = 0.0mT, in this case an axisymmetric torus with velocity components only
in the meridional plane. For other parameters also three-dimensional or even
time-dependent buoyant patterns can be found, similar to previous numerical
results for buoyancy driven convection in a cylindrical cavity (e.g. Crespo del
Arco et al., 1988); e.g. when enforcing buoyancy by increasing AT to 20K, the
axial symmetry is broken and one ends up in a temperature and flow pattern
with wavenumber 2. This is shown in Figure 8 for a horizontal section of the
cylinder.

When a small rotating magnetic field is applied, the basically azimuthal
Lorentz force puts the fluid in rotation. Hybrid flow and temperature patterns
appear as a mixture of the buoyant flow structures and the magnetically forced
rotation, which are slowly proceeding in the azimuthal direction. At AT = 10K,
a rotating magnetic field of By=0.6mT builds up a flow pattern with
wavenumber 2, which is illustrated by a horizontal section in Figure 9. The
corresponding temperature fluctuations at the three monitor points are shown
in Figure 10. The slow procession of the temperature pattern causes regular
large-scale fluctuations. The phase shift between the signals is also a sign for
wavenumber 2.

When further increasing the amplitude of the magnetic field the regular,
often sinusoidal, temperature fluctuations remain. In general, their frequency
increases due to the increased rotational motion of the fluid. Moreover,
separated by a very small transition regime where the three monitor signals
show no phase shift, one may find a change in the wave number of the flow
pattern. Remaining at AT =10K, a magnetic field of By =15mT reveals a
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Figure 8.

Velocity profile and
isotherms for the aspect
ratio 0.5 Rayleigh-Bénard
configuration with

AT = 20K in a
horizontal section
@=y3= %’), without
rotating magnetic field.
The isotherms are equally
spaced (AT}, = 1.05K).
The maximum values of
the cylindrical velocity

components are:
mm

Urmax = 1 s > Vpmax

=12 %y Uzmax = 14%
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Figure 9.
Velocity profile and
isotherms for the aspect
ratio 0.5 Rayleigh-Bénard
configuration with

AT =10K in a horizontal
section (z = y3 = %{), with
a rotating magnetic field
By = 33mT, w =27 -50
Hz). The isotherms are
equally spaced

(AT, = 0.53K). The
maximum values of the
cylindrical velocity
components are:

Uy max = omm

s > Vpmax

f— mm j— mim
=6 s yvz‘,max—g s

temperature pattern with wavenumber 1, as can be seen in the horizontal
section in Figure 11. Accordingly, the phase shift between the temperature
signals changes (Figure 12).

Beyond a certain threshold of the magnetic field (in this case at
By=2.0mT) the forced rotation gains complete dominance over buoyancy
and the flow is reduced to a mere rotation around the cylinder axis (see
horizontal section for By=4.5mT in Figure 13), except for the secondary
motion, which was illustrated in Figure 5 and Taylor-vortex-type instabilities
that appear at the vertical cylinder wall for high magnetic fields (for the
considered parameters at By =~ 5.0mT) and result in irregular and non-
correlated temperature fluctuations at the monitor points, with high
frequency and small amplitude in comparison to the large-scale fluctuations
coming from the pattern procession. Before the onset of these instabilities,
however, the temperature fluctuations can be completely damped (for other
parameters, e.g. a larger AT, they can at least be reduced significantly),
resulting in the desired stabilization of the flow.

Similar flow regimes and flow transitions can be found for other system
parameters. The stronger the buoyant forces (i.e. AT) are, the stronger must be
the applied rotating magnetic field in order to achieve a sufficient damping of the
temperature fluctuations. Observations that were made for aspect ratio 1.0
(Friedrich et al., 1999) could be confirmed. The large-scale fluctuation regime was
investigated in more detail in this study, numerically identifying changes in the
wavenumber of the flow and temperature pattern, as well as the small transition
area without phase shift in between wavenumber 2 and wavenumber 1.
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Note: From the phase shift between the signals it can be deduced
that the flow and temperature pattern has wavenumber 2. This can
also be seen in the horizontal section in Figure 9. Numerically
starting from a state with the fluid at rest, the flow slowly builds up
as soon as the buoyant and magnetic forces are active, ending up
in regular temperature oscillations. In this special case, the transition
from build-up to regular oscillations takes place at t = 370s

4. Conclusions

A three-dimensional finite volume method was developed and presented to
study the influence of rotating magnetic fields on fluid flow in a finite
cylindrical conducting melt. The case without melt flow was tested by
comparison with analytical solutions. The flows in typical cylindrical
Rayleigh-Bénard configurations were studied under the action of a rotating
magnetic field for cylinders with aspect ratios 0.5 and 1.0. The most
important conclusion is that a relatively weak rotating magnetic field can
have a significant effect on the flow configuration, resulting in a
predominantly azimuthal flow and an efficient damping of disturbing
temperature fluctuations resulting from time-dependent buoyant convection.
Moreover, flattened isotherms provide a stabilized heat and mass transport in
the axial direction. The interaction of buoyant and magnetic forces that act on
the flow was investigated in detail, identifying several different flow regimes.
We conclude that rotating magnetic fields offer a promising possibility to
control flows in electrically conducting melts with benefits for application in
crystal growth configurations.

3D numerical
simulation of
melt flow

381

Figure 10.
Temperature signals at
three monitor points at
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7 = R — 4mm,
azimuthally separated
by 90°.
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Figure 11. \
Velocity profile and g
isotherms for the aspect

ratio 0.5 Rayleigh-

Bénard configuration

with AT = 10K in a

horizontal section

(z=y3= %), with a

rotating magnetic field Note: The isotherms are equally spaced (ATiso = 0.53K). The maximum
B, = 15mT, w = 21 values of the cylindrical velocity components are:
50Hz). . ’ Uy,max = 25, Vpmax

— — 1mm
- 6%: Uz,max - 1T

temperature T at 3 monitor points

(z=H/3, r=R-4mm, azimuthal spacing: 90 degrees)
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Figure 12.
Temperature signals at 6.50 . . L . . L . L .
three points at z = y3 = 500 550 600 650 700' 759 800 850 900 950 1000
By = R—dmm, time in s

azimuthally separated Note: From the phase shift between the signals it can be deduced
by 90°. that the flow and temperature pattern was wavenumber 1. This
can also be seen in the horizontal section in Figure 11




Note: The maximum values of the cylindrical velocity components are:

— mm
Uy,max = 6“5' y U max
p— mm — mm
= 2953, Vymex =
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